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Summary

Steady and unsteady experimental

data are presented for several fixed ge-

ometry conditions from a test in the
NASA Langley 0.3-Meter Transonic
Cryogenic Tunnel. The purpose of

this test was to obtain unsteady data
for transonic conditions on a fixed and

pitchillg supercritica.l airfoil at. high

Reynolds numbers. Data an(t brief
analyses for several of the fixed geom-

etry test conditions will be presented
here. These are at Reynolds num-
bers from 6 × 10_s to 35 × 106 based

on chord length, and span a limited
range of Mach numbers and angles of

attack just below and at the onset of
shock buffet. Reynolds scaling effects
appear in both the steady pressure
data and in the onset of shock buf-

fet. a.t Reynolds numbers of 15 × 1()(_

and 30 × 10 ts per chord length.

Introduction

Frequently tile objective in two dimen-

sional wind tunnel experiments involving
conventional and SUl)ercritical airfoils is to

obtain data for steady" or pitching airfoils.
Shock buffet is seen as a limit on the range
of useful data. Thus, it. is valuable t.o 1)e

able to predict the onset, of this behavior.

The purpose of this paper is to make avail-
able two-dimensional wind tunnel test. data

of the SC(2)-0714 airfoil that reveal shock
buffet 1)ehavior.

Onset of shock buffet for a conventional

airfoil was studied extensively in reference

1. Experimental studies through the Mach

number range at. and beyond buffet onset
for several SUl)ercritica.l airfoils confirms that

these airfoils can also experience shock buf-

fet (refs. 2 and 3). Currently there is no
sl.udy of such issues as Reynolds scaling of

this phenomenon at realistic flight. Reynolds
numbers. In this regime transition can be ex-

pected to occur a.t or near the leading edge,
and Reynolds number effects would usually

be due t.o scaling of the turbulent bound-
ary lay'er. Although Reynolds number scal-

ing effects studied in a wind tunnel context
is a complicated matter, its relation to un-

steady transonic conditions is a subject wor-
thy of attention. The presen! paper is not a

comprehensive study of this problem but is

a presentation of selected data from a high
Reynolds number stu(ly made in the 0.3 Me-

ter Transonic Cryogenic Tunnel at the NASA
Langley Research Center. There are several
test. conditions out of that study that are of

interest in the present context.

That test. and the resulting data were

discussed in a previous report (ref. 4).
The purpose of that repor! was to pro-

vide unsteady pressure data for comparison
with CFD codes for the airfoil undergoing
harmonic pitching oscillations for Reynolds

numbers ranging from 6 to 35 × 10" based
on chord length. Baseline data were also

obtained, with the model at a fixed angle.
for all of the Mach number, Reynolds num-

ber, and angle combinations tested. Sev-
eral of these steady test. conditions exhib-

ited shock buffet.. Since the S('(2)-0714 rep-
resents a modern airfoil type for transonic

flight, it. is desirable to make this data avail-
able for coml)arison with comI)utalions a.s

well. The present 1)aper presents data for
several conditions near shock buffet onset of

the SC(2)-0714 supercritical airfoil at several
high Reynolds numbers.



Test Setup

Only a few details pertaining to the test
procedurewill be presentedhere. A more
complete discussioncan be found in refer-
ence 4. Although wind tunnel turbulence
hasbeenmeasuredfor other testsconducted
in this tunnel, (ref. 5) it was not measured
during this test. Floor and ceiling walls
were slotted. Although the tunnel is capa-
ble of sidewall suction it.wasnot usedin the
test presently being discussed. Corrections

for side wall boundary layer blockage can be
found in reference 6. Angle of attack correc-
tions to account for downwash caused by tile

slotted floor and ceiling walls can be found
in reDreuce 7. Neither of these corrections

has been applied to the present data.

The airfoil had a 6 inch chord and an

8 inch span. The surface was polished and
no transition strips were used. A total of
forty three unsteady pressure transducers
were mounted internally and distributed over

both surfaces in three spanwise rows. The
transducer configuration can be found in ref-

erence 4 and is also reproduced ill Figure
1. Pressure data from these transducers was

recorded on analog tape records.

Following the test these analog tape
records were converted to digital calibrated
data files. For the cases presented herein,

digitization was at 5000 samples per sec-

ond. At this time, a slight time misalign-
ment between the two sets of files was dis-

covered. For the cases presented in this

report, the time misalignments range from
0.001 to 0.040 seconds. Due to this mis-

alignment, time correlation studies of vari-
ables recorded on the different units are not

possible. However, it is possible to make a

spectral analysis of the individual unsteady
pressures. This has been done with a dis-

crete Fourier transform analysis package as-
sembled by tile authors, based on the fast
Fourier transfornl (FFT) subroutines found

in reference 8. Spectral analysis of these data
sets was made with this package using block

sizes of 16::184. Smoothing of the transforms

was accomplished using 75% overlap block
averaging and a low frequency window fimc-
tion.

Results

Pressure data are available for the com-

plete set of data points shown in Table 1.

The Table gives the identi_'iug Run and

Data Point numbers for these fixed geometry
conditions. The experimental Mach number,

angles and Reynolds number are included.
The seven cases which are highlighted with

shading are discussed in the remainder of
this report. Figure 2 indicates the relation-

ship of these seven cases to the experimen-
tal shock buffet onset boundary. The exper-

imental data was obtained with 0.5 degree

angle of attack increments and the shaded
region in the figure defines the range within

which shock buffet onset was observed. Fig-
ure 3 presents the chordwise distributions

of the mean of the pressure coefficients for

Cases 1-3 where M_ v = 0.72 and o_p = 2.5
degrees, The data for Reynolds numbers of
15 and 30 million are in good agreement,

while at a Reynolds number of 6 million the
shock is significantly forward.

The pressure coefficient time history
records were analyzed with a fast Fourier

transform program. Figures 4-6 present., for
Cases 1-3, the chordwise distribution of the

resulting modulus squared of the unsteady
component of the upper surface pressure co-

efficient versus frequency for each chordwise

pressure sensor location from x/c = 0.42 to
0.95. For all three Reynolds numbers, signif-
icant aml)litudes are only seen in the vicin-

ity of the shock. Note that the majority of

the unsteadiness is at low frequency although
low levels of unsteadiness extend in a broad

band pattern up to at least, several hundred
Hertz. This is consistent, with intermittent

jumps in shock location across one or two
pressure sensors, a feature that can also be

observed in the pressure traces for another
condition shown in reference 4. Tlle most

notable feature, however, is the variation in

shock location with Reynolds number seen in
the chordwise distributions of mean pressure

coefficient shown in Figure 3.

Figure 7 shows the chordwise distribu-

tion of the mean of the pressure coefficients

for Cases 4 and 6 where :lI_xv = 0.74 and
ct_p = 2.0 degrees. Here again there is lit-

tle difference ill pressure levels or shock lo-
cations for Reynolds numbers of 15 and 30



million, while tile shocklocation has moved
rearwardjust beyond.r/c = 0.60. The mod-

ulus squared of the pressure coefficient, versus
frequency and chordwise location is shown in

Figures 8 and 9 for these two cases. As for
Cases 1-:3. significant levels are seen only in
the vicinity' of tile shock. AgAin, low fre-

quency oscillations (0-10 Hz) predominate.
At, x/c = 0.62 and 0.66 low amplitude levels
are seen for frequencies up to about 1:50 Hz
and these levels have increased from corre-

sponding levels seen in Figures 4-6.

the modnlus squAred of the pressure coeffi-

cients versus frequency in Figure 13 and ver-
sus chordwise location in Figure 14, are in

the range/"_'r = 0.19-0.21 at. h'e = 15 × 10_

and k_. l, = 0.20- 0.23 at /7(= 30 × 10_;.
There appear to be higher harmonics a.s-
sociated with the shock oscillation a.t both

Reynolds numbers as evidenced by the small

peaks at higher frequencies in Figures 11-14.
Also note that the low frequency peak seen
in the "steady" cases is largely absent from
the buffet cases.

Reference 4 reports episodes of isolated
shock motion near several transducers a.t

_l.l_.p = 0.72, a_ v = 2.0 ° and Re = 35 x 106.

Although not discussed in that report, nearly
continuous shock buffet, occurs at. ]llea.p =

0.74 and a_ v = 3.0 _ for Reynolds numbers of

15 × 106 and 30 × 10_i. Thus, for M_xv = 0.74,
shock buffet evidently develops in the range

a_x_, = 2.0-:1.0 degrees. The precise location
is unknown since only one intermediate data

point, between 2.0 and 3.0 degrees at Re =
:30 × 10 _ was taken. Figure 10 shows the
chordwise distributions of the mean of the

pressure coefficients for Cases 5 and 7 where

'.lL_.p = 0.7,1 and a_.,.p = 3.0 degrees. Now
the pressure gradients through the shock are

lower than those shown in Figures 3 and 7
and tile shock location has moved forward to

slightly less than .r/c = 0.60. This reversal
of the aftwards motion of the shock with in-

creasing angle of attack, sometimes referred
to as "shock stall", is associated with sepa-

ration onset. The lowering of the mean pres-
sure gradient at the shock is associated with

the onset of large scale shock nlotions.

These motions are evident in the chord-

wise distribution of the modulus squared of
the unsteady upper surface pressure coeffi-

cient versus frequency and chordwise loca-
tion for Cases 5 and 7 shown ill Figures 11
and 12. At Re = 15 × lff _, Figure 11, a

pronlillent spectral peak near 70 Hz is seen
from a'/c = 0.46 to 0.62 with the largest
a.mplitude a.t..r/c = 0.54. Although re-

duced in amplitude, this feature is also ob-
served at all stations downstream. The same

shock oscillation behavior is seen in Figure
1'2, where H_ = :30 × 10_. The reduced fre-

quencies (/",,'l = 2rcf(c/2)/U) of the funda-
mental shock oscillation modes, as shown in

By comparing Figures 11 aud 12 with

Figures 8 and 9 it is clear thai shock buf-
fet does not. occur a.t. a_p = 2.0 degrees at.

either Reynolds number, but does occur at

both Reynolds numbers at a_xv = 3.0 de-
grees. The intensity of the shock buffet is

somewhat lower at the higher Reynolds num-
ber. The chordwise distributions of the mod-

ulus squared of the unsteady pressure co-
efficient at frequencies near the fundamen-
t.a.1 shock oscillation mode show that the re-

gion in which the shock moves shifl.s ap-

proximately 6 percent aft. in going from a
Reynolds number of 15 x 10_ t.o 30 × 10 _.
This shift in the location of the shock mo-

tion with Reynolds number is consistent with

the shift observed in reference 4 for pitching
airfoils and in the Reynolds number effect

oil steady shock location for the supercrit-
ical airfoil S(' ') 2A,(_)-071 also tested ill this

tunnel (ref..5).

Finally, a notAble Reynolds scale effect, is
observed in the mean of the unsteady trail-

ing edge pressures shown in Figure 10 that is
largely absent from the steady trAiling edge
pressures shown in Figure 7_. A common

use of steady pressure measurements in the

vicinity of trailing edges is the inference of
buffet onset when this pressure fails to re-

cover to a level higher than some small neg-
Ative value. Clearly, use of this criteria tot"

the two cases in Figure 10 is inappropriate
since in both cases large shock oscillations
are seen while the data in the figure indicales

recovery to positive pressure, at least, for the

higher Reynolds number case. The Reynolds
scale effect seen for :r/c = 0.95 would appear
to have inlplications for this use of trailing

edge "divergence" of pressure as an indica-
tor of buffet onset..



Concluding Remarks

Experimental data has been analyzed
from a previous test. of a 14 percent thick

supercritical low aspect ratio wing section
model at Reynolds numbers from 6 x 106 to
30 x 10_ at transonic Mach numbers. Al-

though three dimensional effects can be ex-
pected to be significant, for a model of low

aspect ratio, no attempt has been made to

quanti(v these effects. An analysis that as-
sumes the flow to be symmetric about the

wing mid span has been performed of the
pressure data taken along two chordwise

rows located near the mid span. Steady con-
ditions have shown fl'om moderate to strong
low frequency unsteadiness localized near the
shock. In contrast, shock buffet cases exhibit

large scale shock motion and flow unsteadi-

ness which encompasses the region from the
shock to the trailing edge. They also exhibit
a significant reduction in the mean pressure

gradient through the shock. A Reynolds
scale effect has been observed in the some-

what reduced intensity of the shock buffet
at the higher Reynolds number. Mean pres-

sures at the trailing edge for shock buffet
cases at several-Reynolds numbers also show

a Reynolds scaling of the turbulent bound-
ary layer. While trailing edge pressure di-

vergence is seen in the lower Reynolds num-
ber buffet, condition it is not evident in the

buffet, data at the higher Reynolds number.
Further investigation of the effect of side

wall boundary layer interference, variation in
transition location, fixed versus free transi-

tion and the interplay between these and a.
Reynolds scaling of the turbulent boundary
layer needs to be made.
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Table 1:SC(2)-0714 Fixed Geometry Conditions

Run

8

21

22
23

6

33
6

33
14

16

4
16
4

18

19
20

Data

Point

201A
208

215A
530
541
552

563A
575
589
98A

107A
123A

886
139
903
372

365A
362
356

334A
341

349A
355

416A

417
429
442
52A
452
65

462A
463A

475
487A
501B

513

M exp

0.65

0.70

0.72

!i̧ i!

!

!
I
l
i

Re(XIO -6)

30

,l
15

P

35

q F

6

P

10

q f

_exp

(Deg.)

0.0
1.0

2.0
-2.0

-1.0
0.0
1.0
2.0
3.0

-2.0
-1.0

1.0
2.0
2.5
3.0

-2.5
-2.0
-1.5
-1.0

0.0
1.0
2.0
2.5

-2.5
-2.0
-1.0

0.0
1.0
2.0

2.5
-2.5
-2.0
-1.0

0.0
1.0
2.0

Case

1



Table1: (Concluded)

Run

27

l
28
29

2
15

P

30

,1,
5

Data M exp
Point

661A 0.72
677
693

709A
726

Re(XIO -6)

15

375A
376
384
391

399A
406
412
742
760
81A

20

a,x p Case
(Deg.)

-2.0
-1.0

0.0
1.
2.0

-2.5
-2.0
-1.0

0.0
1.0
2.0
2.5

-2.0
-1.0

1.0

/ 88A 2.0

! [ 2_S ] 3
9 229A 35 -2.0

12 302 -1.0
13 311 0.0

2_4 318 ,, 1.0325 _, 2.0
593A 0.74 15 -2.0

_, 604 -1.0
25 615A 0.0

7 143A 30 -2.0
34 907B -1.0

0.0
1.0
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Figure 1. SC(2)-0714 airfoil and pressure transducer geometry.
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Figure 2. SC(2)-0714 airfoil steady and unsteady cases, experiment.
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